Moral foundations elicit shared and dissociable cortical activation modulated by political ideology

  • Graham, J. et al. in Atlas of Moral Psychology (eds Gray, K. & Graham, J.) 211–222 (Guilford Press, 2018).

  • Sinnott-Armstrong, W. & Wheatley, T. The disunity of morality and why it matters to philosophy. Monist 95, 355–377 (2012).

    Article 

    Google Scholar
     

  • Kohlberg, L. in Handbook of Socialization (ed. Goslin, D.) 347– 480 (Academic Press, 1969).

  • Gray, K., Schein, C. & Ward, A. F. The myth of harmless wrongs in moral cognition: automatic dyadic completion from sin to suffering. J. Exp. Psychol. Gen. 143, 1600–1615 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Gray, K., Young, L. & Waytz, A. Mind perception is the essence of morality. Psychol. Inq. 23, 101–124 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Parkinson, C. et al. Is morality unified? Evidence that distinct neural systems underlie moral judgments of harm, dishonesty, and disgust. J. Cogn. Neurosci. 23, 3162–3180 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Prinz, J. J. in Moral Psychology (ed. Sinnott-Armstrong, W.) 267–406 (MIT Press, 2008).

  • Tsoi, L., Dungan, J. A., Chakroff, A. & Young, L. L. Neural substrates for moral judgments of psychological versus physical harm. Soc. Cogn. Affect. Neurosci. 13, 460–470 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wasserman, E. A., Chakroff, A., Saxe, R. & Young, L. Illuminating the conceptual structure of the space of moral violations with searchlight representational similarity analysis. NeuroImage 159, 371–387 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Graham, J. et al. in Advances in Experimental Social Psychology Vol. 47, 55–130 (eds Zanna, M. P. et al.) (Academic Press, 2013).

  • Greenwald, A. G. There is nothing so theoretical as a good method. Perspect. Psychol. Sci. 7, 99–108 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Weber, R., Fisher, J. T., Hopp, F. R. & Lonergan, C. Taking messages into the magnet: method–theory synergy in communication neuroscience. Commun. Monogr. 85, 81–102 (2018).

    Article 

    Google Scholar
     

  • Haidt, J. The new synthesis in moral psychology. Science 316, 998–1002 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Iyer, R., Koleva, S., Graham, J., Ditto, P. & Haidt, J. Understanding libertarian morality: the psychological dispositions of self-identified libertarians. PLoS ONE 7, e42366 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sperber, D. in The Innate Mind: Structure and Contents (eds Carruthers, P. et al.) 53–68 (Oxford Univ. Press, 2005).

  • Cosmides, L. & Tooby, J. in Mapping the Mind: Domain Specificity in Cognition and Culture (eds Hirschfeld, L. A. & Gelman, S. A.) 85–116 (Cambridge Univ. Press, 1994).

  • Suhler, C. L. & Churchland, P. Can innate, modular ‘foundations’ explain morality? Challenges for Haidt’s moral foundations theory. J. Cogn. Neurosci. 23, 2103–2116 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Haidt, J. & Joseph, C. How moral foundations theory succeeded in building on sand: a response to Suhler and Churchland. J. Cogn. Neurosci. 23, 2117–2122 (2011).

    Article 

    Google Scholar
     

  • Eres, R., Louis, W. R. & Molenberghs, P. Common and distinct neural networks involved in fMRI studies investigating morality: an ALE meta-analysis. Soc. Neurosci. 13, 384–398 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Greene, J. & Haidt, J. How (and where) does moral judgment work? Trends Cogn. Sci. 6, 517–523 (2002).

    Article 
    PubMed 

    Google Scholar
     

  • Han, H. Neural correlates of moral sensitivity and moral judgment associated with brain circuitries of selfhood: a meta-analysis. J. Moral Educ. 46, 97–113 (2017).

    Article 

    Google Scholar
     

  • Sevinc, G. & Spreng, R. N. Contextual and perceptual brain processes underlying moral cognition: a quantitative meta-analysis of moral reasoning and moral emotions. PLoS ONE 9, e87427 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Graham, J., Haidt, J. & Nosek, B. A. Liberals and conservatives rely on different sets of moral foundations. J. Pers. Soc. Psychol. 96, 1029–1046 (2009).

    Article 
    PubMed 

    Google Scholar
     

  • Kivikangas, J. M., Fernández-Castilla, B., Järvelä, S., Ravaja, N. & Lönnqvist, J.-E. Moral foundations and political orientation: systematic review and meta-analysis. Psychol. Bull. 147, 55–94 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Lewis, G. J., Kanai, R., Bates, T. C. & Rees, G. Moral values are associated with individual differences in regional brain volume. J. Cogn. Neurosci. 24, 1657–1663 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nash, K., Baumgartner, T. & Knoch, D. Group-focused morality is associated with limited conflict detection and resolution capacity: neuroanatomical evidence. Biol. Psychol. 123, 235–240 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Clifford, S., Iyengar, V., Cabeza, R. & Sinnott-Armstrong, W. Moral foundations vignettes: a standardized stimulus database of scenarios based on moral foundations theory. Behav. Res. Methods 47, 1178–1198 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sevinc, G., Gurvit, H. & Spreng, R. N. Salience network engagement with the detection of morally laden information. Soc. Cogn. Affect. Neurosci. 12, 1118–1127 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nichols, T., Brett, M., Andersson, J., Wager, T. & Poline, J. B. Valid conjunction inference with the minimum statistic. Neuroimage 25, 653–660 (2005).

    Article 
    PubMed 

    Google Scholar
     

  • Feldman Hall, O. & Mobbs, D. in Brain Mapping: An Encyclopedic Reference (eds Toga, A. W. & Lieberman, M. D.) 205–210 (Elsevier, 2015).

  • Young, L. & Dungan, J. Where in the brain is morality? Everywhere and maybe nowhere. Soc. Neurosci. 7, 1–10 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Young, L. & Saxe, R. An FMRI investigation of spontaneous mental state inference for moral judgment. J. Cogn. Neurosci. 21, 1396–1405 (2009).

    Article 
    PubMed 

    Google Scholar
     

  • Young, L., Scholz, J. & Saxe, R. Neural evidence for ‘intuitive prosecution’: the use of mental state information for negative moral verdicts. Soc. Neurosci. 6, 302–315 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Norman, K. A., Polyn, S. M., Detre, G. J. & Haxby, J. V. Beyond mind-reading: multi-voxel pattern analysis of fMRI data. Trends Cogn. Sci. 10, 424–430 (2006).

    Article 
    PubMed 

    Google Scholar
     

  • Wager, T. D. et al. An fMRI-based neurologic signature of physical pain. N. Engl. J. Med. 368, 1388–1397 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yarkoni, T., Poldrack, R. A., Nichols, T. E., Van Essen, D. C. & Wager, T. D. Large-scale automated synthesis of human functional neuroimaging data. Nat. Methods 8, 665–670 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kriegeskorte, N., Simmons, W. K., Bellgowan, P. S. & Baker, C. I. Circular analysis in systems neuroscience: the dangers of double dipping. Nat. Neurosci. 12, 535–540 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pereira, F. & Botvinick, M. Information mapping with pattern classifiers: a comparative study. Neuroimage 56, 476–496 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Kriegeskorte, N., Mur, M. & Bandettini, P. A. Representational similarity analysis—connecting the branches of systems neuroscience. Front. Syst. Neurosci. 24, 4 (2008).


    Google Scholar
     

  • Reimers, N. & Gurevych, I. Sentence-BERT: sentence embeddings using Siamese BERT-networks. Preprint at https://arxiv.org/abs/1908.10084(2019).

  • Diedrichsen, J. et al. Comparing representational geometries using whitened unbiased-distance-matrix similarity. Preprint at https://arxiv.org/abs/2007.02789 (2020).

  • Kay, K. N., Naselaris, T., Prenger, R. J. & Gallant, J. L. Identifying natural images from human brain activity. Nature 452, 352–355 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lescroart, M. D. & Gallant, J. L. Human scene-selective areas represent 3D configurations of surfaces. Neuron 101, 178–192 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gantman, A., Devraj-Kizuk, S., Mende-Siedlecki, P., Van Bavel, J. J. & Mathewson, K. E. The time course of moral perception: an ERP investigation of the moral pop-out effect. Soc. Cogn. Affect. Neurosci. 15, 235–246 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kragel, P. A., Reddan, M. C., LaBar, K. S. & Wager, T. D. Emotion schemas are embedded in the human visual system. Sci. Adv. 5, eaaw4358 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Amit, E. & Greene, J. D. You see, the ends don’t justify the means: visual imagery and moral judgment. Psychol. Sci. 23, 861–868 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Caruso, E. M. & Gino, F. Blind ethics: closing one’s eyes polarizes moral judgments and discourages dishonest behavior. Cognition 118, 280–285 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Kahane, G. et al. The neural basis of intuitive and counterintuitive moral judgment. Soc. Cogn. Affect. Neurosci. 7, 393–402 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Graham, J. et al. Mapping the moral domain. J. Pers. Soc. Psychol. 101, 366 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McFarquhar, M. Modeling group-level repeated measurements of neuroimaging data using the univariate general linear model. Front. Neurosci. 13, 352 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Heath, S. et al. Neural mechanisms underlying the facilitation of naming in aphasia using a semantic task: an fMRI study. BMC Neurosci. 13, 1–19 (2012).

    Article 

    Google Scholar
     

  • Brunet, E., Sarfati, Y., Hardy-Baylé, M. C. & Decety, J. A PET investigation of the attribution of intentions with a nonverbal task. Neuroimage 11, 157–166 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Leong, Y. C., Chen, J., Willer, R. & Zaki, J. Conservative and liberal attitudes drive polarized neural responses to political content. Proc. Natl Acad. Sci. USA 117, 27731–27739 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kanai, R., Feilden, T., Firth, C. & Rees, G. Political orientations are correlated with brain structure in young adults. Curr. Biol. 21, 677–680 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Van Overwalle, F. Social cognition and the brain: a meta-analysis. Hum. Brain Mapp. 30, 829–858 (2009).

    Article 
    PubMed 

    Google Scholar
     

  • Northoff, G. et al. Self-referential processing in our brain—a meta-analysis of imaging studies on the self. Neuroimage 31, 440–457 (2006).

    Article 
    PubMed 

    Google Scholar
     

  • Haxby, J. V. et al. Distributed and overlapping representations of faces and objects in ventral temporal cortex. Science 293, 2425–2430 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Graham, J. Explaining away differences in moral judgment: comment on Gray and Keeney (2015). Soc. Psychol. Pers. Sci. 6, 869–873 (2015).

    Article 

    Google Scholar
     

  • Kragel, P. A. & LaBar, K. S. Decoding the nature of emotion in the brain. Trends Cogn. Sci. 20, 444–455 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Woo, C. W., Chang, L. J., Lindquist, M. A. & Wager, T. D. Building better biomarkers: brain models in translational neuroimaging. Nat. Neurosci. 20, 365–377 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Haidt, J., & Joseph, C. in The Innate Mind (eds Carruthers, P. et al.) 367–391 (Oxford Univ. Press, 2007).

  • Sinnott-Armstrong, W. in Moral Brains: The Neuroscience of Morality (ed. Liao, S. M.) 331–354 (Oxford Univ. Press, 2016).

  • Horikawa, T. & Kamitani, Y. Generic decoding of seen and imagined objects using hierarchical visual features. Nat. Commun. 8, 15037 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gantman, A. P. & Van Bavel, J. J. Moral perception. Trends Cogn. Sci. 19, 631–633 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Amodio, D. M., Jost, J. T., Master, S. L. & Yee, C. M. Neurocognitive correlates of liberalism and conservatism. Nat. Neurosci. 10, 1246–1247 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Doğruyol, B., Alper, S. & Yilmaz, O. The five-factor model of the moral foundations theory is stable across WEIRD and non-WEIRD cultures. Pers. Individ. Diff. 151, 109547 (2019).

    Article 

    Google Scholar
     

  • Atari, M. et al. Morality beyond the WEIRD: how the nomological network of morality varies across cultures. Preprint at https://psyarxiv.com/q6c9r/ (2022).

  • Crone, D. L., Bode, S., Murawski, C. & Laham, S. M. The socio-moral image database (SMID): a novel stimulus set for the study of social, moral and affective processes. PLoS ONE 13, e0190954 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McCurrie, C. H., Crone, D. L., Bigelow, F. & Laham, S. M. Moral and affective film set (MAAFS): a normed moral video database. PLoS ONE 13, e0206604 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schein, C. The importance of context in moral judgments. Perspect. Psychol. Sci. 15, 207–215 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Curry, O. S. in The Evolution of Morality (eds Shackelford, T. K. & Hansen, R. D.) 27–51 (Springer International Publishing, 2016).

  • McCaffrey, J. & Wright, J. in Neuroscience and Philosophy (eds De Brigard, F. & Sinnott-Armstrong, W.) 427–466 (MIT Press, 2022).

  • Sullivan, J. A. Coordinated pluralism as a means to facilitate integrative taxonomies of cognition. Philos. Explor. 20, 129–145 (2017).

    Article 

    Google Scholar
     

  • Christensen, R. H. B. Analysis of Ordinal Data with Cumulative Link Models—Estimation with the R-package Ordinal (2015); http://people.vcu.edu/~dbandyop/BIOS625/CLM_R.pdf (R Development Core Team, 2011).

  • Bates, D. et al. lme4: Linear mixed-effects models using Eigen and S4. R package version 1.1-24. 2014 (2015).

  • Seabold, S. & Perktold, J. Statsmodels: econometric and statistical modeling with Python. In Proc. 9th Python in Science Conference (eds van der Walt, S. & Millman, J.) 92–96 (SciPy, 2010).

  • Esteban, O. et al. fMRIPrep: a robust preprocessing pipeline for functional MRI. Nat. Methods 16, 111–116 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gorgolewski, K. et al. Nipype: a flexible, lightweight and extensible neuroimaging data processing framework in Python. Front. Neuroinform. 5, 13 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tustison, N. J. et al. N4ITK: improved N3 bias correction. IEEE Trans. Med. Imaging 29, 1310–1320 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Avants, B. B., Epstein, C. L., Grossman, M. & Gee, J. C. Symmetric diffeomorphic image registration with cross-correlation: evaluating automated labeling of elderly and neurodegenerative brain. Med. Image Anal. 12, 26–41 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhang, Y., Brady, M. & Smith, S. Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm. IEEE Trans. Med. Imaging 20, 45–57 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fonov, V. S., Evans, A. C., McKinstry, R. C., Almli, C. R. & Collins, D. L. Unbiased non-linear average age-appropriate brain templates from birth to adulthood. Neuroimage 47, S102 (2009).

  • Jenkinson, M. & Smith, S. A global optimisation method for robust affine registration of brain images. Med. Image Anal. 5, 143–156 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Greve, D. N. & Fischl, B. Accurate and robust brain image alignment using boundary-based registration. Neuroimage 48, 63–72 (2009).

    Article 
    PubMed 

    Google Scholar
     

  • Jenkinson, M., Bannister, P., Brady, M. & Smith, S. Improved optimization for the robust and accurate linear registration and motion correction of brain images. Neuroimage 17, 825–841 (2002).

    Article 
    PubMed 

    Google Scholar
     

  • Cox, R. W. & Hyde, J. S. Software tools for analysis and visualization of fMRI data. NMR Biomed. 10, 171–178 (1997).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Power, J. D. et al. Methods to detect, characterize, and remove motion artifact in resting state fMRI. Neuroimage 84, 320–341 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Satterthwaite, T. D. et al. An improved framework for confound regression and filtering for control of motion artifact in the preprocessing of resting-state functional connectivity data. Neuroimage 64, 240–256 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Lanczos, C. Evaluation of noisy data. J. Soc. Ind. Appl. Math. B 1, 76–85 (1964).

    Article 

    Google Scholar
     

  • Notter, M. P. et al. AtlasReader: a Python package to generate coordinate tables, region labels, and informative figures from statistical MRI images. J. Open Source Softw. 4, 1257 (2019).

    Article 

    Google Scholar
     

  • Gale, D. J., de Wael, R. V., Benkarim, O. & Bernhardt, B. Surfplot: publication-ready brain surface figures (v0.1.0). Zenodo https://doi.org/10.5281/zenodo.5567926 (2021).

  • Vos de Wael, R. et al. BrainSpace: a toolbox for the analysis of macroscale gradients in neuroimaging and connectomics datasets. Commun. Biol. 3, 103 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chang, L., Jolly, E., Cheong, J. H., Burnashev, A. & Chen, A. cosanlab/nltools: 0.3.11 Zenodo https://zenodo.org/record/2229813(2018).

  • Abraham, A. et al. Machine learning for neuroimaging with scikit-learn. Front. Neuroinform. 8, 14 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chang, L. J., Gianaros, P. J., Manuck, S. B., Krishnan, A. & Wager, T. D. A sensitive and specific neural signature for picture-induced negative affect. PLoS Biol. 13, e1002180 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Schütt, H. H., Lin, B., Diedrichsen, J. & Kriegeskorte, N. Python representational similarity analysis toolbox (rsatoolbox). Github https://github.com/rsagroup/rsatoolbox/ (2019).

  • Walther, A. et al. Reliability of dissimilarity measures for multi-voxel pattern analysis. Neuroimage 137, 188–200 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Schütt, H. H., Kipnis, A. D., Diedrichsen, J. & Kriegeskorte, N. Statistical inference on representational geometries. Preprint at https://arxiv.org/abs/2112.09200 (2021).

  • Nili, H. et al. A toolbox for representational similarity analysis. PLoS Comput. Biol. 10, e1003553 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Check Also

    Send-off events build foundation for new students | Office of International Affairs

    Send-off events build foundation for new students | Office of International Affairs

    Send-off events build foundation for new students The India Gateway and the Alumni Club of …

    Leave a Reply

    Your email address will not be published. Required fields are marked *